Search results for "municipal sludge"
showing 7 items of 7 documents
Catalytic hydrothermal liquefaction of municipal sludge assisted by formic acid for the production of next-generation fuels
2021
Abstract Hydrothermal liquefaction (HTL) of municipal sludge (MS) was studied at 325 °C and 30 min at 10 and 30% w/w concentration of MS using formic acid (FA) as a green liquid hydrogen donor both in the absence and in the presence of heterogeneous catalysts. Pellets of commercial NiMo/Al2O3, CoMo/Al2O3 and felt of activated carbon ACF 1600 were used as catalysts. The addition of FA at high MS loading allowed to increase the yields in BC from 41 to 62% and its H/C ratio from 1.80 to 2.01 leading to energy recovery (ER) higher than 100%.When heterogeneous catalysts were used together with FA, a marked improvement of BC yields and quality was obtained at 10% MS loading. This behavior was not…
Pharmaceuticals in processing of municipal sewage sludge studied by grab and passive sampling
2018
Abstract Concentrations of pharmaceuticals, consisting of four anti-inflammatory and one antiepileptic drug, were studied in the aqueous and solid phase of municipal sewage sludge, collected from a wastewater treatment plant (WWTP) in central Finland. The samples included untreated municipal sludge from the biological wastewater treatment, digested sludge and sludge before and after composting. First, samples were taken as grab samples to study the bioavailable part in aqueous phase but also the part in solid fraction. Later, the long-term concentrations were studied by passive sampling with styrene divinylbenzene-reverse phase sulfonated (SDB-RPS) disks. In the untreated solid sludge, the …
Hydrothermal liquefaction of wet waste biomass: a practical assessment to achieve an integral valorization of municipal sludge
2020
Hydrothermal liquefaction of municipal sludge was conducted to perform a practical assessment to achieve an integral valorization of this wet waste biomass. Experiments were done to investigate the effects of sub- and supercritical water and of the fluid dynamic regime on the energy recovery of the process and on the quality of the products. Experimental runs were performed at two different temperatures (350°C and 400°C) changing reaction time in order to work at the same kinetic severity of the process (LogR0=8.9, calculated as in ref. [3]). An improvement of the C % in the solid residues and of the ration of H/C of the biocrude was obtained when stirred reactor was used both in sub- and s…
Role of low-weight carboxylic acids in phytotoxicity of composts
2013
Hydrothermal liquefaction of municipal sludge in sub- and super- critical water
2020
Hydrothermal liquefaction of municipal sludge was conducted to investigate the effects of sub- and supercritical water and of the fluid dynamic regime on the quality of the products. Preliminary experimental runs were performed at two different temperatures (350°C and 400°C) changing reaction time in order to work at fixed kinetic severity of the process. An improvement of the C content in the solid residues and of the ratio H/C of the biocrude was obtained when a stirred reactor was used both in sub- and supercritical water. A hydrocarbon fraction was separated from biocrude whose maximum yield of 25% w/w was achieved in supercritical conditions. Results showed that the cumulative energy r…
Hydrothermal liquefaction of waste biomass in stirred reactors: One step forward to the integral valorization of municipal sludge
2020
Abstract Hydrothermal liquefaction (HTL) of municipal sludge (MS) was performed at 350 °C for 30 min (subcritical water) and at 400 °C for 0 min (supercritical water) at fixed kinetic severity (LogR0 = 8.9) in static and stirred batch reactors to study the effect of the flow regime on the energy recovery (ER) of the process and on the quality of the products. With adopted experimental procedures it was possible to reduce to less than 10% the yield of lost organic compounds, termed volatiles (VT), and to collect and quantify a liquid hydrocarbon fraction (HC) separated from the biocrude (BC). The highest value of the HC yield, 25% w/w, was obtained in supercritical conditions. The C content …
Catalytic hydrothermal liquefaction of municipal sludge in subcritical water
2021
In the last decades, the dwindling of the fossil sources of energy coupled with the growth of energy demand and of waste production prompted the research in developing novel industrial technologies for renewable energy production and waste valorization. Hydrothermal liquefaction (HTL) is a good alternative to transform wet biomasses as microalgae, macroalgae, agricultural residues, food waste, and municipal sludge (MS) into value-added products with high efficiency and decreasing the amounts that has to be disposed of. HTL takes place in an aqueous environment, without the energy cost of drying the biomass, at 300-400°C and pressure of 10-40 MPa [1,2]. At these operative conditions, an inte…